As you may know, Jeremy Howard claims in his excellent fastai course that data augmentation is perhaps the most important regularization technique when training a model for Computer Vision, second only to getting more data samples (which is often costly or just impossible).
During the last 2 years a number of data augmentation techniques have been developed with excellent results in vision datasets.
In this notebook we'll see how you can easily apply some of this new data augmentation techniques to time series using fastai, fastai_timeseries and torchtimeseries.models library available at timeseriesAI
%%javascript
utils.load_extension('collapsible_headings/main')
utils.load_extension('hide_input/main')
utils.load_extension('autosavetime/main')
utils.load_extension('execute_time/ExecuteTime')
utils.load_extension('code_prettify/code_prettify')
utils.load_extension('scroll_down/main')
utils.load_extension('jupyter-js-widgets/extension')
<IPython.core.display.Javascript object>
Import libraries 📚
%reload_ext autoreload
%autoreload 2
%matplotlib inline
from fastai_timeseries import *
from torchtimeseries.models import *
Prepare data 🔢
First we'll create a databunch for the 'OliveOil' UCR dataset. You can select any other dataset.
dsid = 'Beef'
db = create_UCR_databunch(dsid)
db
TSDataBunch;
Train: LabelList (30 items)
x: TimeSeriesList
TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470)
y: CategoryList
1,1,1,1,1
Path: .;
Valid: LabelList (30 items)
x: TimeSeriesList
TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470),TimeSeries(ch=1, seq_len=470)
y: CategoryList
1,1,1,1,1
Path: .;
Test: None
Once the databunch's been built, we can easy visualize time series and their classes using the show_batch method.
☣️ Remember that these charts represent different time series with their respective labels.
db.show_batch()
Build learner 🏗
Now I'll create a learner object. As a model I'll use the new Inceptiontime.
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy())
Train 🚵🏼♀️
learn.fit_one_cycle(200)
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.697133 | 1.636551 | 0.200000 | 00:02 |
1 | 1.658765 | 1.634878 | 0.200000 | 00:02 |
2 | 1.628749 | 1.633871 | 0.200000 | 00:02 |
3 | 1.603675 | 1.633338 | 0.200000 | 00:02 |
4 | 1.581709 | 1.633209 | 0.200000 | 00:02 |
5 | 1.562016 | 1.633017 | 0.200000 | 00:02 |
6 | 1.543772 | 1.632773 | 0.200000 | 00:02 |
7 | 1.526412 | 1.632591 | 0.200000 | 00:02 |
8 | 1.509713 | 1.632315 | 0.200000 | 00:02 |
9 | 1.493474 | 1.631614 | 0.200000 | 00:02 |
10 | 1.477614 | 1.630401 | 0.200000 | 00:02 |
11 | 1.462065 | 1.628628 | 0.200000 | 00:02 |
12 | 1.446795 | 1.626409 | 0.200000 | 00:02 |
13 | 1.431797 | 1.623053 | 0.200000 | 00:02 |
14 | 1.417064 | 1.619603 | 0.200000 | 00:02 |
15 | 1.402596 | 1.613142 | 0.200000 | 00:02 |
16 | 1.388477 | 1.609142 | 0.200000 | 00:02 |
17 | 1.374838 | 1.595912 | 0.200000 | 00:02 |
18 | 1.361802 | 1.584519 | 0.200000 | 00:02 |
19 | 1.348744 | 1.574727 | 0.200000 | 00:02 |
20 | 1.335601 | 1.558694 | 0.266667 | 00:02 |
21 | 1.322362 | 1.539030 | 0.366667 | 00:02 |
22 | 1.309687 | 1.525543 | 0.400000 | 00:02 |
23 | 1.297099 | 1.525444 | 0.333333 | 00:02 |
24 | 1.287485 | 1.487910 | 0.366667 | 00:02 |
25 | 1.278417 | 1.451224 | 0.366667 | 00:02 |
26 | 1.267326 | 1.419333 | 0.433333 | 00:02 |
27 | 1.255071 | 1.531612 | 0.266667 | 00:02 |
28 | 1.245143 | 1.428932 | 0.333333 | 00:02 |
29 | 1.233745 | 1.673071 | 0.333333 | 00:02 |
30 | 1.222732 | 1.317958 | 0.400000 | 00:02 |
31 | 1.210769 | 1.317483 | 0.433333 | 00:02 |
32 | 1.197816 | 1.636617 | 0.333333 | 00:02 |
33 | 1.183761 | 1.968882 | 0.300000 | 00:02 |
34 | 1.169847 | 1.360843 | 0.400000 | 00:02 |
35 | 1.156803 | 1.217057 | 0.533333 | 00:02 |
36 | 1.142337 | 2.626117 | 0.366667 | 00:02 |
37 | 1.130414 | 1.677359 | 0.433333 | 00:02 |
38 | 1.122333 | 1.932176 | 0.400000 | 00:02 |
39 | 1.116616 | 1.541641 | 0.466667 | 00:02 |
40 | 1.105934 | 2.903922 | 0.366667 | 00:02 |
41 | 1.094385 | 5.271531 | 0.233333 | 00:02 |
42 | 1.082686 | 5.667654 | 0.266667 | 00:02 |
43 | 1.070797 | 4.902615 | 0.266667 | 00:02 |
44 | 1.058120 | 7.664695 | 0.233333 | 00:02 |
45 | 1.047126 | 4.719625 | 0.400000 | 00:02 |
46 | 1.040817 | 3.125497 | 0.333333 | 00:02 |
47 | 1.033824 | 5.493695 | 0.333333 | 00:02 |
48 | 1.025297 | 6.714429 | 0.366667 | 00:02 |
49 | 1.016156 | 7.241136 | 0.333333 | 00:02 |
50 | 1.004743 | 6.179959 | 0.366667 | 00:02 |
51 | 0.993645 | 8.953449 | 0.333333 | 00:02 |
52 | 0.982641 | 11.618028 | 0.266667 | 00:02 |
53 | 0.972119 | 8.661292 | 0.333333 | 00:02 |
54 | 0.961185 | 7.684217 | 0.333333 | 00:02 |
55 | 0.949132 | 9.823573 | 0.300000 | 00:02 |
56 | 0.937367 | 10.694403 | 0.333333 | 00:02 |
57 | 0.925187 | 12.210872 | 0.266667 | 00:02 |
58 | 0.913146 | 14.403736 | 0.233333 | 00:02 |
59 | 0.901192 | 13.310433 | 0.233333 | 00:02 |
60 | 0.889542 | 12.824086 | 0.266667 | 00:02 |
61 | 0.879126 | 14.573278 | 0.233333 | 00:02 |
62 | 0.870193 | 11.141336 | 0.333333 | 00:02 |
63 | 0.861951 | 4.968851 | 0.333333 | 00:02 |
64 | 0.854350 | 9.333371 | 0.333333 | 00:02 |
65 | 0.847897 | 2.665716 | 0.500000 | 00:02 |
66 | 0.842686 | 2.313952 | 0.366667 | 00:02 |
67 | 0.834853 | 3.875152 | 0.366667 | 00:02 |
68 | 0.827271 | 2.235546 | 0.433333 | 00:02 |
69 | 0.819326 | 2.601296 | 0.400000 | 00:02 |
70 | 0.811829 | 3.508690 | 0.466667 | 00:02 |
71 | 0.804304 | 4.183553 | 0.366667 | 00:02 |
72 | 0.797064 | 3.399729 | 0.366667 | 00:02 |
73 | 0.789246 | 2.493759 | 0.533333 | 00:02 |
74 | 0.781297 | 1.851689 | 0.466667 | 00:02 |
75 | 0.773465 | 1.665282 | 0.433333 | 00:02 |
76 | 0.765998 | 5.534258 | 0.266667 | 00:02 |
77 | 0.758704 | 1.918662 | 0.466667 | 00:02 |
78 | 0.750972 | 2.003186 | 0.500000 | 00:02 |
79 | 0.743452 | 1.611230 | 0.533333 | 00:02 |
80 | 0.736011 | 1.628435 | 0.533333 | 00:02 |
81 | 0.728675 | 1.465575 | 0.600000 | 00:02 |
82 | 0.721576 | 0.969776 | 0.733333 | 00:02 |
83 | 0.714612 | 0.898719 | 0.700000 | 00:02 |
84 | 0.707672 | 1.032310 | 0.666667 | 00:02 |
85 | 0.700603 | 1.012637 | 0.700000 | 00:02 |
86 | 0.693883 | 1.637516 | 0.500000 | 00:02 |
87 | 0.687245 | 1.379606 | 0.566667 | 00:02 |
88 | 0.680597 | 0.982019 | 0.700000 | 00:02 |
89 | 0.674161 | 1.008814 | 0.700000 | 00:02 |
90 | 0.667775 | 1.266140 | 0.600000 | 00:02 |
91 | 0.661540 | 1.079461 | 0.600000 | 00:02 |
92 | 0.655445 | 0.770133 | 0.833333 | 00:02 |
93 | 0.649447 | 0.776157 | 0.833333 | 00:02 |
94 | 0.643603 | 0.780240 | 0.833333 | 00:02 |
95 | 0.637886 | 0.794417 | 0.766667 | 00:02 |
96 | 0.632302 | 0.794495 | 0.766667 | 00:02 |
97 | 0.626835 | 0.836716 | 0.733333 | 00:02 |
98 | 0.621506 | 0.952855 | 0.700000 | 00:02 |
99 | 0.616283 | 1.031987 | 0.633333 | 00:02 |
100 | 0.611199 | 0.992564 | 0.666667 | 00:02 |
101 | 0.606229 | 0.990812 | 0.666667 | 00:02 |
102 | 0.601378 | 1.038975 | 0.633333 | 00:02 |
103 | 0.596639 | 0.925851 | 0.700000 | 00:02 |
104 | 0.592018 | 0.839252 | 0.766667 | 00:02 |
105 | 0.587503 | 0.846729 | 0.766667 | 00:02 |
106 | 0.583092 | 0.876285 | 0.766667 | 00:02 |
107 | 0.578791 | 0.867612 | 0.800000 | 00:02 |
108 | 0.574593 | 0.865421 | 0.833333 | 00:02 |
109 | 0.570497 | 0.861011 | 0.833333 | 00:02 |
110 | 0.566498 | 0.860369 | 0.800000 | 00:02 |
111 | 0.562593 | 0.856723 | 0.800000 | 00:02 |
112 | 0.558781 | 0.857777 | 0.833333 | 00:02 |
113 | 0.555063 | 0.861587 | 0.833333 | 00:02 |
114 | 0.551431 | 0.864382 | 0.833333 | 00:02 |
115 | 0.547886 | 0.866298 | 0.833333 | 00:02 |
116 | 0.544424 | 0.866298 | 0.833333 | 00:02 |
117 | 0.541043 | 0.876166 | 0.766667 | 00:02 |
118 | 0.537743 | 0.877081 | 0.766667 | 00:02 |
119 | 0.534521 | 0.870586 | 0.833333 | 00:02 |
120 | 0.531374 | 0.871706 | 0.833333 | 00:02 |
121 | 0.528300 | 0.868688 | 0.833333 | 00:02 |
122 | 0.525299 | 0.864780 | 0.833333 | 00:02 |
123 | 0.522367 | 0.863685 | 0.833333 | 00:02 |
124 | 0.519504 | 0.860523 | 0.866667 | 00:02 |
125 | 0.516706 | 0.858484 | 0.866667 | 00:02 |
126 | 0.513973 | 0.856415 | 0.866667 | 00:02 |
127 | 0.511304 | 0.855038 | 0.866667 | 00:02 |
128 | 0.508696 | 0.854263 | 0.866667 | 00:02 |
129 | 0.506147 | 0.853070 | 0.866667 | 00:02 |
130 | 0.503657 | 0.851796 | 0.833333 | 00:02 |
131 | 0.501223 | 0.852567 | 0.800000 | 00:02 |
132 | 0.498845 | 0.849896 | 0.800000 | 00:02 |
133 | 0.496521 | 0.847939 | 0.833333 | 00:02 |
134 | 0.494250 | 0.847190 | 0.833333 | 00:02 |
135 | 0.492030 | 0.846976 | 0.833333 | 00:02 |
136 | 0.489860 | 0.848106 | 0.833333 | 00:02 |
137 | 0.487739 | 0.849875 | 0.833333 | 00:02 |
138 | 0.485665 | 0.849752 | 0.833333 | 00:02 |
139 | 0.483638 | 0.850015 | 0.833333 | 00:02 |
140 | 0.481656 | 0.851885 | 0.833333 | 00:02 |
141 | 0.479719 | 0.855177 | 0.833333 | 00:02 |
142 | 0.477824 | 0.856939 | 0.833333 | 00:02 |
143 | 0.475971 | 0.856017 | 0.833333 | 00:02 |
144 | 0.474160 | 0.854898 | 0.833333 | 00:02 |
145 | 0.472389 | 0.854715 | 0.833333 | 00:02 |
146 | 0.470656 | 0.854882 | 0.833333 | 00:02 |
147 | 0.468962 | 0.854378 | 0.833333 | 00:02 |
148 | 0.467305 | 0.853540 | 0.833333 | 00:02 |
149 | 0.465685 | 0.853437 | 0.833333 | 00:02 |
150 | 0.464100 | 0.854188 | 0.833333 | 00:02 |
151 | 0.462550 | 0.855247 | 0.833333 | 00:02 |
152 | 0.461033 | 0.855636 | 0.833333 | 00:02 |
153 | 0.459550 | 0.855190 | 0.833333 | 00:02 |
154 | 0.458098 | 0.854677 | 0.833333 | 00:02 |
155 | 0.456679 | 0.854630 | 0.833333 | 00:02 |
156 | 0.455290 | 0.855154 | 0.833333 | 00:02 |
157 | 0.453931 | 0.855961 | 0.833333 | 00:02 |
158 | 0.452602 | 0.856542 | 0.833333 | 00:02 |
159 | 0.451301 | 0.856716 | 0.833333 | 00:02 |
160 | 0.450029 | 0.856649 | 0.833333 | 00:02 |
161 | 0.448783 | 0.856666 | 0.833333 | 00:02 |
162 | 0.447565 | 0.856919 | 0.833333 | 00:02 |
163 | 0.446372 | 0.857375 | 0.833333 | 00:02 |
164 | 0.445206 | 0.857843 | 0.833333 | 00:02 |
165 | 0.444064 | 0.858171 | 0.833333 | 00:02 |
166 | 0.442946 | 0.858309 | 0.833333 | 00:02 |
167 | 0.441853 | 0.858343 | 0.833333 | 00:02 |
168 | 0.440783 | 0.858372 | 0.833333 | 00:02 |
169 | 0.439735 | 0.858487 | 0.833333 | 00:02 |
170 | 0.438710 | 0.858700 | 0.833333 | 00:02 |
171 | 0.437707 | 0.858980 | 0.833333 | 00:02 |
172 | 0.436725 | 0.859262 | 0.833333 | 00:02 |
173 | 0.435763 | 0.859469 | 0.833333 | 00:02 |
174 | 0.434822 | 0.859581 | 0.833333 | 00:02 |
175 | 0.433901 | 0.859597 | 0.833333 | 00:02 |
176 | 0.433000 | 0.859544 | 0.833333 | 00:02 |
177 | 0.432117 | 0.859459 | 0.833333 | 00:02 |
178 | 0.431253 | 0.859385 | 0.833333 | 00:02 |
179 | 0.430408 | 0.859341 | 0.833333 | 00:02 |
180 | 0.429580 | 0.859343 | 0.833333 | 00:02 |
181 | 0.428769 | 0.859393 | 0.833333 | 00:02 |
182 | 0.427976 | 0.859490 | 0.833333 | 00:02 |
183 | 0.427199 | 0.859620 | 0.833333 | 00:02 |
184 | 0.426438 | 0.859767 | 0.833333 | 00:02 |
185 | 0.425694 | 0.859917 | 0.833333 | 00:02 |
186 | 0.424965 | 0.860061 | 0.833333 | 00:02 |
187 | 0.424251 | 0.860193 | 0.833333 | 00:02 |
188 | 0.423552 | 0.860311 | 0.833333 | 00:02 |
189 | 0.422868 | 0.860409 | 0.833333 | 00:02 |
190 | 0.422198 | 0.860496 | 0.833333 | 00:02 |
191 | 0.421542 | 0.860570 | 0.833333 | 00:02 |
192 | 0.420899 | 0.860630 | 0.833333 | 00:02 |
193 | 0.420270 | 0.860679 | 0.833333 | 00:02 |
194 | 0.419654 | 0.860717 | 0.833333 | 00:02 |
195 | 0.419051 | 0.860749 | 0.833333 | 00:02 |
196 | 0.418461 | 0.860777 | 0.833333 | 00:02 |
197 | 0.417882 | 0.860800 | 0.833333 | 00:02 |
198 | 0.417316 | 0.860822 | 0.833333 | 00:02 |
199 | 0.416761 | 0.860841 | 0.833333 | 00:02 |
83.3% is a pretty good result with the Beef dataset. But let's see if we can improve it even further by using data augmentation.
Applying data augmentation techniques
In some cases, data augmentation is applied to a single time series. Changes are applied to that individual time series. One of these techniques is Cutout.
More recently, new data augmentations have appeared that combine a time series with another randomly selected time series, blending both in some way. 2 important techniques applicable to time series are Mixup and CutMix.
All these techniques work really well in images, but are not still often used with time series.
Data augmentation: Single Time Series
You'll see that applying these techniques is super easy. You only need to add the required callback.
Cutout (DeVries, 2017)
https://arxiv.org/abs/1708.04552
This is a single item transformation, where a random section of a time series is is replaced by zero.
You can apply all thes techniques in 2 ways (the result is exactly the same):
learn = Learner(db, InceptionTime(db.features, db.c))
learn.cutout();
learn = Learner(db, InceptionTime(db.features, db.c)).cutout()
Since you cannot see the impact of the technique, I've built a function (show_tfms) to be able to easily visualize it.
learn = Learner(db, InceptionTime(db.features, db.c)).cutout().show_tfms();
☣️ Remember that all these are examples of the same time series, once cutout has been applied. All techniques in this notebook are applied randomly on the fly, thus generating an endless amount of variations.
Parameter
These techniques have a parameter that define the amount of change from the original time series. It's called alpha.
For cutout, the default alpha is set to 1, but you can modify it up or down, depending on how much regularization you want to apply.
learn = Learner(db, InceptionTime(db.features, db.c)).cutout(alpha=1).show_tfms();
learn = Learner(db, InceptionTime(db.features, db.c)).cutout(alpha=.2).show_tfms();
learn = Learner(db, InceptionTime(db.features, db.c)).cutout(alpha=2.).show_tfms();
The default value is reasonable, but feel free to modify it.
Data augmentation: Multi Time Series
There are at least a couple of things multiTS data transforms have in common:
- they combine 2 or more TS to create a new synthetic TS
- unlike previous techniques like cutout, the entire TS provides informative datapoints.
Mixup (Zhang, 2018)
https://arxiv.org/abs/1710.09412
Mixup blends two time series randomly drawn from our training data. A weight λ (between .5-1) is assigned to the first sample, and 1-λ to the second one. Despite its simplicity, mixup allows a new state-of-the-art performance in the CIFAR-10, CIFAR- 100, and ImageNet-2012 image classification datasets, and can also improve performance in time series problems.
learn = Learner(db, InceptionTime(db.features, db.c)).mixup(alpha=.4).show_tfms();
Mixup creates time series that look very 'real', based on a weighted average of 2 time series.
The parameter for mixup is called alpha, and it's default value set to .4. Usual values range between .2-.4, although you can use any number greater than 0.
Cutmix (Yun, 2019)
https://arxiv.org/abs/1905.04899
Cutmix is similar to Cutout, as a single patch is cut and pasted into a different training Time Series.
CutMix consistently outperforms the state-of-the-art augmentation strategies on CIFAR and ImageNet classification tasks, as well as on the ImageNet weakly- supervised localization task.
learn = Learner(db, InceptionTime(db.features, db.c)).cutmix(alpha=1.).show_tfms();
For cutmix the default value of alpha is also 1.
How to train using data augmentation?
It's super easy! The only thing you need to do is:
- First you will create your ImageDataBunch as you would normally do.
- The you will create the learner as usual, but you will add to it the selected augmentation you have selected (cutmix, mixup or cutmix). You can only select one of these new data augmentations at a time.
Mixup
dsis = 'Beef'
db = create_UCR_databunch(dsid)
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy()).mixup()
- If you want to visualize the effect data augmentation before training (to adjust alpha for example), just add show_tfms()
learn.show_tfms();
That's it!!. You are now ready to train with data augmentation!!
learn.fit_one_cycle(200)
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.689828 | 1.619471 | 0.200000 | 00:02 |
1 | 1.673922 | 1.618781 | 0.200000 | 00:02 |
2 | 1.647962 | 1.618125 | 0.200000 | 00:02 |
3 | 1.631207 | 1.617363 | 0.200000 | 00:02 |
4 | 1.611909 | 1.616646 | 0.200000 | 00:02 |
5 | 1.595307 | 1.615953 | 0.200000 | 00:02 |
6 | 1.578687 | 1.615269 | 0.200000 | 00:02 |
7 | 1.563238 | 1.614500 | 0.200000 | 00:02 |
8 | 1.548130 | 1.613729 | 0.200000 | 00:02 |
9 | 1.534638 | 1.612713 | 0.200000 | 00:02 |
10 | 1.522140 | 1.611550 | 0.200000 | 00:02 |
11 | 1.512481 | 1.610328 | 0.200000 | 00:02 |
12 | 1.499381 | 1.608953 | 0.200000 | 00:02 |
13 | 1.486657 | 1.607466 | 0.200000 | 00:02 |
14 | 1.474970 | 1.605166 | 0.200000 | 00:02 |
15 | 1.464807 | 1.602398 | 0.200000 | 00:02 |
16 | 1.450602 | 1.599006 | 0.200000 | 00:02 |
17 | 1.441010 | 1.592957 | 0.200000 | 00:02 |
18 | 1.431140 | 1.585209 | 0.200000 | 00:02 |
19 | 1.420655 | 1.575528 | 0.200000 | 00:02 |
20 | 1.411091 | 1.568540 | 0.233333 | 00:02 |
21 | 1.401187 | 1.557126 | 0.300000 | 00:02 |
22 | 1.393381 | 1.547969 | 0.300000 | 00:02 |
23 | 1.386891 | 1.509804 | 0.333333 | 00:02 |
24 | 1.380682 | 1.517822 | 0.266667 | 00:02 |
25 | 1.372284 | 1.507112 | 0.300000 | 00:02 |
26 | 1.363400 | 1.529526 | 0.233333 | 00:02 |
27 | 1.356471 | 1.546933 | 0.266667 | 00:02 |
28 | 1.345878 | 1.476422 | 0.366667 | 00:02 |
29 | 1.338359 | 1.489565 | 0.333333 | 00:02 |
30 | 1.328831 | 1.370115 | 0.366667 | 00:02 |
31 | 1.319710 | 1.492780 | 0.333333 | 00:02 |
32 | 1.310245 | 1.909312 | 0.200000 | 00:02 |
33 | 1.304384 | 1.942166 | 0.200000 | 00:02 |
34 | 1.298426 | 1.449292 | 0.466667 | 00:02 |
35 | 1.296161 | 1.392294 | 0.566667 | 00:02 |
36 | 1.287528 | 1.707830 | 0.433333 | 00:02 |
37 | 1.279770 | 1.918631 | 0.300000 | 00:02 |
38 | 1.270381 | 1.791980 | 0.366667 | 00:02 |
39 | 1.259860 | 3.575068 | 0.333333 | 00:02 |
40 | 1.254035 | 2.539945 | 0.400000 | 00:02 |
41 | 1.245580 | 1.968613 | 0.466667 | 00:02 |
42 | 1.237224 | 2.108842 | 0.333333 | 00:02 |
43 | 1.228153 | 2.946331 | 0.333333 | 00:02 |
44 | 1.220387 | 3.205979 | 0.433333 | 00:02 |
45 | 1.212358 | 3.939463 | 0.266667 | 00:02 |
46 | 1.208177 | 5.770495 | 0.200000 | 00:02 |
47 | 1.201450 | 3.143615 | 0.466667 | 00:02 |
48 | 1.195719 | 2.494654 | 0.333333 | 00:02 |
49 | 1.189962 | 4.610262 | 0.366667 | 00:02 |
50 | 1.184943 | 3.094051 | 0.433333 | 00:02 |
51 | 1.178857 | 4.785711 | 0.366667 | 00:02 |
52 | 1.173128 | 5.147786 | 0.333333 | 00:02 |
53 | 1.166027 | 4.195990 | 0.333333 | 00:02 |
54 | 1.158504 | 4.618266 | 0.366667 | 00:02 |
55 | 1.154156 | 5.224677 | 0.400000 | 00:02 |
56 | 1.146860 | 5.487449 | 0.433333 | 00:02 |
57 | 1.143896 | 3.752536 | 0.366667 | 00:02 |
58 | 1.139026 | 3.471848 | 0.366667 | 00:02 |
59 | 1.132638 | 3.616133 | 0.366667 | 00:02 |
60 | 1.127449 | 3.148611 | 0.333333 | 00:02 |
61 | 1.119508 | 2.473933 | 0.333333 | 00:02 |
62 | 1.111254 | 2.150029 | 0.266667 | 00:02 |
63 | 1.103141 | 1.433178 | 0.500000 | 00:02 |
64 | 1.095411 | 1.055387 | 0.633333 | 00:02 |
65 | 1.088881 | 1.327046 | 0.600000 | 00:02 |
66 | 1.081982 | 1.605395 | 0.566667 | 00:02 |
67 | 1.079995 | 2.084538 | 0.433333 | 00:02 |
68 | 1.077057 | 2.170066 | 0.400000 | 00:02 |
69 | 1.073893 | 2.078325 | 0.566667 | 00:02 |
70 | 1.070387 | 5.268016 | 0.266667 | 00:02 |
71 | 1.065864 | 10.335102 | 0.200000 | 00:02 |
72 | 1.064703 | 4.640256 | 0.266667 | 00:02 |
73 | 1.061717 | 1.847973 | 0.366667 | 00:02 |
74 | 1.060507 | 1.547381 | 0.533333 | 00:02 |
75 | 1.057674 | 1.439578 | 0.666667 | 00:02 |
76 | 1.055321 | 1.494718 | 0.666667 | 00:02 |
77 | 1.054715 | 2.734326 | 0.233333 | 00:02 |
78 | 1.049378 | 1.831880 | 0.533333 | 00:02 |
79 | 1.048055 | 1.342813 | 0.600000 | 00:02 |
80 | 1.045389 | 1.058503 | 0.600000 | 00:02 |
81 | 1.038875 | 2.418780 | 0.466667 | 00:02 |
82 | 1.036652 | 3.206536 | 0.500000 | 00:02 |
83 | 1.034173 | 2.932166 | 0.466667 | 00:02 |
84 | 1.030047 | 2.636901 | 0.400000 | 00:02 |
85 | 1.027156 | 2.956616 | 0.333333 | 00:02 |
86 | 1.020752 | 3.017718 | 0.366667 | 00:02 |
87 | 1.016966 | 2.859704 | 0.366667 | 00:02 |
88 | 1.011848 | 2.513342 | 0.366667 | 00:02 |
89 | 1.007957 | 2.365700 | 0.366667 | 00:02 |
90 | 1.003033 | 2.211102 | 0.400000 | 00:02 |
91 | 1.000160 | 2.693544 | 0.200000 | 00:02 |
92 | 0.995621 | 2.895486 | 0.233333 | 00:02 |
93 | 0.995153 | 2.610945 | 0.333333 | 00:02 |
94 | 0.991598 | 2.286873 | 0.200000 | 00:02 |
95 | 0.988696 | 2.728762 | 0.200000 | 00:02 |
96 | 0.987154 | 2.344796 | 0.300000 | 00:02 |
97 | 0.983275 | 3.232719 | 0.300000 | 00:02 |
98 | 0.980970 | 1.335799 | 0.500000 | 00:02 |
99 | 0.977147 | 1.167713 | 0.533333 | 00:02 |
100 | 0.972813 | 1.170871 | 0.700000 | 00:02 |
101 | 0.971278 | 1.362768 | 0.500000 | 00:02 |
102 | 0.969613 | 1.461215 | 0.600000 | 00:02 |
103 | 0.965762 | 1.476665 | 0.533333 | 00:02 |
104 | 0.960326 | 2.355848 | 0.533333 | 00:02 |
105 | 0.955352 | 2.981581 | 0.433333 | 00:02 |
106 | 0.949955 | 3.107812 | 0.433333 | 00:02 |
107 | 0.946355 | 2.925362 | 0.400000 | 00:02 |
108 | 0.940663 | 2.415063 | 0.433333 | 00:02 |
109 | 0.938540 | 1.688057 | 0.600000 | 00:02 |
110 | 0.937894 | 1.362045 | 0.566667 | 00:02 |
111 | 0.933151 | 1.243008 | 0.600000 | 00:02 |
112 | 0.932395 | 1.176888 | 0.566667 | 00:02 |
113 | 0.928695 | 1.349458 | 0.533333 | 00:02 |
114 | 0.926381 | 1.627350 | 0.400000 | 00:02 |
115 | 0.921778 | 1.600521 | 0.400000 | 00:02 |
116 | 0.917558 | 1.366820 | 0.533333 | 00:02 |
117 | 0.912869 | 1.430818 | 0.533333 | 00:02 |
118 | 0.909506 | 1.488323 | 0.466667 | 00:02 |
119 | 0.908174 | 1.238361 | 0.533333 | 00:02 |
120 | 0.906753 | 0.972730 | 0.633333 | 00:02 |
121 | 0.902651 | 0.901888 | 0.733333 | 00:02 |
122 | 0.899289 | 0.816972 | 0.766667 | 00:02 |
123 | 0.894561 | 0.944673 | 0.700000 | 00:02 |
124 | 0.892816 | 0.783612 | 0.833333 | 00:02 |
125 | 0.887467 | 0.708474 | 0.900000 | 00:02 |
126 | 0.885093 | 0.726909 | 0.866667 | 00:02 |
127 | 0.881646 | 0.995866 | 0.700000 | 00:02 |
128 | 0.875917 | 1.191868 | 0.600000 | 00:02 |
129 | 0.871996 | 1.267549 | 0.566667 | 00:02 |
130 | 0.869246 | 1.369829 | 0.466667 | 00:02 |
131 | 0.867821 | 1.436767 | 0.466667 | 00:02 |
132 | 0.864062 | 1.160231 | 0.566667 | 00:02 |
133 | 0.859628 | 1.105737 | 0.666667 | 00:02 |
134 | 0.859078 | 0.851334 | 0.800000 | 00:02 |
135 | 0.858720 | 0.778529 | 0.766667 | 00:02 |
136 | 0.856945 | 1.147635 | 0.700000 | 00:02 |
137 | 0.854129 | 1.129824 | 0.700000 | 00:02 |
138 | 0.852220 | 0.979698 | 0.766667 | 00:02 |
139 | 0.847723 | 0.809028 | 0.800000 | 00:02 |
140 | 0.843133 | 0.673137 | 0.933333 | 00:02 |
141 | 0.839500 | 0.736410 | 0.800000 | 00:02 |
142 | 0.835289 | 0.999134 | 0.666667 | 00:02 |
143 | 0.833026 | 1.256068 | 0.600000 | 00:02 |
144 | 0.833735 | 1.237204 | 0.633333 | 00:02 |
145 | 0.834965 | 1.282824 | 0.600000 | 00:02 |
146 | 0.833917 | 1.396549 | 0.566667 | 00:02 |
147 | 0.828235 | 1.317177 | 0.566667 | 00:02 |
148 | 0.827091 | 1.111997 | 0.666667 | 00:02 |
149 | 0.824293 | 0.851436 | 0.733333 | 00:02 |
150 | 0.823835 | 0.715306 | 0.866667 | 00:02 |
151 | 0.822530 | 0.689193 | 0.833333 | 00:02 |
152 | 0.817367 | 0.732036 | 0.800000 | 00:02 |
153 | 0.817202 | 0.856252 | 0.733333 | 00:02 |
154 | 0.816193 | 0.948537 | 0.666667 | 00:02 |
155 | 0.813613 | 1.066483 | 0.633333 | 00:02 |
156 | 0.811144 | 1.068854 | 0.666667 | 00:02 |
157 | 0.810831 | 1.071055 | 0.666667 | 00:02 |
158 | 0.808077 | 0.977296 | 0.666667 | 00:02 |
159 | 0.804630 | 0.838821 | 0.733333 | 00:02 |
160 | 0.802261 | 0.772696 | 0.833333 | 00:02 |
161 | 0.802727 | 0.791702 | 0.833333 | 00:02 |
162 | 0.798813 | 0.835375 | 0.833333 | 00:02 |
163 | 0.797573 | 0.865562 | 0.733333 | 00:02 |
164 | 0.798201 | 0.891660 | 0.733333 | 00:02 |
165 | 0.795692 | 0.892899 | 0.733333 | 00:02 |
166 | 0.793362 | 0.867864 | 0.733333 | 00:02 |
167 | 0.792883 | 0.810626 | 0.766667 | 00:02 |
168 | 0.791444 | 0.769112 | 0.766667 | 00:02 |
169 | 0.788628 | 0.742704 | 0.833333 | 00:02 |
170 | 0.787844 | 0.720856 | 0.833333 | 00:02 |
171 | 0.784512 | 0.715271 | 0.833333 | 00:02 |
172 | 0.782812 | 0.724146 | 0.833333 | 00:02 |
173 | 0.780747 | 0.742088 | 0.833333 | 00:02 |
174 | 0.779653 | 0.765256 | 0.800000 | 00:02 |
175 | 0.777027 | 0.789565 | 0.800000 | 00:02 |
176 | 0.777006 | 0.810619 | 0.766667 | 00:02 |
177 | 0.777498 | 0.812250 | 0.800000 | 00:02 |
178 | 0.774280 | 0.812091 | 0.800000 | 00:02 |
179 | 0.774260 | 0.810058 | 0.800000 | 00:02 |
180 | 0.773745 | 0.804928 | 0.800000 | 00:02 |
181 | 0.771602 | 0.797569 | 0.800000 | 00:02 |
182 | 0.770738 | 0.778828 | 0.800000 | 00:02 |
183 | 0.769796 | 0.761000 | 0.833333 | 00:02 |
184 | 0.769606 | 0.746166 | 0.833333 | 00:02 |
185 | 0.769999 | 0.735135 | 0.866667 | 00:02 |
186 | 0.769042 | 0.724371 | 0.866667 | 00:02 |
187 | 0.765944 | 0.714545 | 0.833333 | 00:02 |
188 | 0.766425 | 0.709452 | 0.833333 | 00:02 |
189 | 0.765466 | 0.703008 | 0.833333 | 00:02 |
190 | 0.761368 | 0.699016 | 0.866667 | 00:02 |
191 | 0.759790 | 0.696969 | 0.866667 | 00:02 |
192 | 0.758059 | 0.694304 | 0.866667 | 00:02 |
193 | 0.756838 | 0.691365 | 0.866667 | 00:02 |
194 | 0.756011 | 0.691939 | 0.866667 | 00:02 |
195 | 0.755389 | 0.692854 | 0.866667 | 00:02 |
196 | 0.754549 | 0.691379 | 0.866667 | 00:02 |
197 | 0.754667 | 0.690486 | 0.866667 | 00:02 |
198 | 0.754686 | 0.692739 | 0.866667 | 00:02 |
199 | 0.753276 | 0.694158 | 0.866667 | 00:02 |
☣️ I've built a chart to compare performance with and without mixup. As you can see, and this has occurred in many experiments I've done, it takes longer to get a high level of performance with mixup, but then it tends to keep growing more than without mixup. This is something to take into account when designing your experiments.
Cutmix
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy()).cutmix()
learn.fit_one_cycle(200)
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.706453 | 1.624805 | 0.200000 | 00:02 |
1 | 1.685710 | 1.624133 | 0.200000 | 00:02 |
2 | 1.661669 | 1.623917 | 0.200000 | 00:02 |
3 | 1.638445 | 1.623724 | 0.200000 | 00:02 |
4 | 1.624182 | 1.623581 | 0.200000 | 00:02 |
5 | 1.614200 | 1.623360 | 0.200000 | 00:02 |
6 | 1.604189 | 1.623062 | 0.200000 | 00:02 |
7 | 1.591671 | 1.622744 | 0.200000 | 00:02 |
8 | 1.579674 | 1.622297 | 0.200000 | 00:02 |
9 | 1.569131 | 1.621474 | 0.200000 | 00:02 |
10 | 1.561477 | 1.620105 | 0.200000 | 00:02 |
11 | 1.550535 | 1.618287 | 0.200000 | 00:02 |
12 | 1.537226 | 1.616055 | 0.200000 | 00:02 |
13 | 1.533442 | 1.613569 | 0.200000 | 00:02 |
14 | 1.529642 | 1.610154 | 0.200000 | 00:02 |
15 | 1.526031 | 1.606566 | 0.200000 | 00:02 |
16 | 1.516714 | 1.601131 | 0.200000 | 00:02 |
17 | 1.509571 | 1.593389 | 0.200000 | 00:02 |
18 | 1.506086 | 1.585316 | 0.333333 | 00:02 |
19 | 1.502734 | 1.573562 | 0.233333 | 00:02 |
20 | 1.499156 | 1.554533 | 0.466667 | 00:02 |
21 | 1.488737 | 1.531936 | 0.333333 | 00:02 |
22 | 1.484465 | 1.516183 | 0.333333 | 00:02 |
23 | 1.481679 | 1.487968 | 0.400000 | 00:02 |
24 | 1.480139 | 1.481755 | 0.266667 | 00:02 |
25 | 1.474577 | 1.457397 | 0.333333 | 00:02 |
26 | 1.471540 | 1.453811 | 0.333333 | 00:02 |
27 | 1.470596 | 1.458764 | 0.333333 | 00:02 |
28 | 1.469030 | 1.463857 | 0.333333 | 00:02 |
29 | 1.466600 | 1.523658 | 0.333333 | 00:02 |
30 | 1.464954 | 1.616127 | 0.333333 | 00:02 |
31 | 1.463124 | 1.639686 | 0.300000 | 00:02 |
32 | 1.458457 | 1.663750 | 0.300000 | 00:02 |
33 | 1.452542 | 1.680489 | 0.366667 | 00:02 |
34 | 1.448779 | 1.987832 | 0.233333 | 00:02 |
35 | 1.443480 | 1.724338 | 0.333333 | 00:02 |
36 | 1.439493 | 2.210143 | 0.233333 | 00:02 |
37 | 1.436260 | 2.561839 | 0.300000 | 00:02 |
38 | 1.435892 | 1.457669 | 0.400000 | 00:02 |
39 | 1.433157 | 1.703312 | 0.333333 | 00:02 |
40 | 1.431497 | 2.224642 | 0.366667 | 00:02 |
41 | 1.430971 | 2.875991 | 0.400000 | 00:02 |
42 | 1.428263 | 2.325544 | 0.333333 | 00:02 |
43 | 1.427699 | 1.876932 | 0.300000 | 00:02 |
44 | 1.422279 | 1.727904 | 0.333333 | 00:02 |
45 | 1.418207 | 1.762134 | 0.300000 | 00:02 |
46 | 1.416281 | 1.538334 | 0.466667 | 00:02 |
47 | 1.415849 | 1.947046 | 0.433333 | 00:02 |
48 | 1.412131 | 1.897876 | 0.433333 | 00:02 |
49 | 1.409524 | 2.145555 | 0.400000 | 00:02 |
50 | 1.404963 | 6.031844 | 0.333333 | 00:02 |
51 | 1.396030 | 6.310513 | 0.333333 | 00:02 |
52 | 1.396604 | 5.209888 | 0.333333 | 00:02 |
53 | 1.394261 | 4.222475 | 0.333333 | 00:02 |
54 | 1.391686 | 2.320999 | 0.400000 | 00:02 |
55 | 1.388773 | 1.465874 | 0.433333 | 00:02 |
56 | 1.386416 | 2.058067 | 0.366667 | 00:02 |
57 | 1.386596 | 3.500876 | 0.333333 | 00:02 |
58 | 1.384054 | 2.610673 | 0.366667 | 00:02 |
59 | 1.384070 | 2.270039 | 0.366667 | 00:02 |
60 | 1.383814 | 1.708934 | 0.466667 | 00:02 |
61 | 1.380550 | 1.421436 | 0.366667 | 00:02 |
62 | 1.382743 | 1.412282 | 0.433333 | 00:02 |
63 | 1.384651 | 2.413202 | 0.333333 | 00:02 |
64 | 1.380379 | 2.628878 | 0.333333 | 00:02 |
65 | 1.380742 | 2.428576 | 0.333333 | 00:02 |
66 | 1.378306 | 1.427382 | 0.433333 | 00:02 |
67 | 1.377688 | 1.407880 | 0.400000 | 00:02 |
68 | 1.377784 | 1.648727 | 0.366667 | 00:02 |
69 | 1.374915 | 1.851315 | 0.366667 | 00:02 |
70 | 1.372057 | 1.959223 | 0.333333 | 00:02 |
71 | 1.367003 | 1.710080 | 0.400000 | 00:02 |
72 | 1.366259 | 1.444495 | 0.333333 | 00:02 |
73 | 1.366753 | 1.294768 | 0.500000 | 00:02 |
74 | 1.362236 | 1.499587 | 0.366667 | 00:02 |
75 | 1.359724 | 2.356512 | 0.433333 | 00:02 |
76 | 1.359129 | 2.694739 | 0.400000 | 00:02 |
77 | 1.358984 | 2.540057 | 0.366667 | 00:02 |
78 | 1.357662 | 2.659967 | 0.333333 | 00:02 |
79 | 1.360360 | 2.046504 | 0.333333 | 00:02 |
80 | 1.356875 | 1.603783 | 0.366667 | 00:02 |
81 | 1.356482 | 1.273809 | 0.366667 | 00:02 |
82 | 1.354857 | 1.436357 | 0.466667 | 00:02 |
83 | 1.352965 | 1.385521 | 0.500000 | 00:02 |
84 | 1.348206 | 1.277132 | 0.566667 | 00:02 |
85 | 1.347547 | 1.401034 | 0.366667 | 00:02 |
86 | 1.346372 | 1.559262 | 0.400000 | 00:02 |
87 | 1.344510 | 1.635159 | 0.466667 | 00:02 |
88 | 1.344424 | 1.650026 | 0.466667 | 00:02 |
89 | 1.342335 | 1.612467 | 0.466667 | 00:02 |
90 | 1.341733 | 1.306708 | 0.500000 | 00:02 |
91 | 1.338287 | 1.169277 | 0.533333 | 00:02 |
92 | 1.337811 | 1.212823 | 0.600000 | 00:02 |
93 | 1.337693 | 1.435008 | 0.466667 | 00:02 |
94 | 1.331457 | 1.337413 | 0.400000 | 00:02 |
95 | 1.331445 | 1.105399 | 0.666667 | 00:02 |
96 | 1.331121 | 1.171597 | 0.533333 | 00:02 |
97 | 1.324570 | 1.264037 | 0.500000 | 00:02 |
98 | 1.322947 | 1.286684 | 0.400000 | 00:02 |
99 | 1.323301 | 1.347077 | 0.400000 | 00:02 |
100 | 1.321393 | 1.297375 | 0.366667 | 00:02 |
101 | 1.319361 | 1.191885 | 0.533333 | 00:02 |
102 | 1.315395 | 1.189938 | 0.600000 | 00:02 |
103 | 1.315025 | 1.259681 | 0.466667 | 00:02 |
104 | 1.308935 | 1.349674 | 0.400000 | 00:02 |
105 | 1.305654 | 1.378004 | 0.466667 | 00:02 |
106 | 1.305785 | 1.346191 | 0.433333 | 00:02 |
107 | 1.305715 | 1.356849 | 0.433333 | 00:02 |
108 | 1.304183 | 1.541104 | 0.400000 | 00:02 |
109 | 1.302752 | 1.282268 | 0.500000 | 00:02 |
110 | 1.303141 | 1.279333 | 0.500000 | 00:02 |
111 | 1.300831 | 1.186200 | 0.666667 | 00:02 |
112 | 1.300369 | 1.150524 | 0.666667 | 00:02 |
113 | 1.304650 | 1.354581 | 0.466667 | 00:02 |
114 | 1.303918 | 1.443647 | 0.433333 | 00:02 |
115 | 1.302446 | 1.253269 | 0.600000 | 00:02 |
116 | 1.299625 | 1.254723 | 0.533333 | 00:02 |
117 | 1.297959 | 1.355177 | 0.466667 | 00:02 |
118 | 1.295360 | 1.413822 | 0.500000 | 00:02 |
119 | 1.294235 | 1.272771 | 0.500000 | 00:02 |
120 | 1.294245 | 1.135344 | 0.600000 | 00:02 |
121 | 1.290968 | 1.179739 | 0.500000 | 00:02 |
122 | 1.291180 | 1.224161 | 0.533333 | 00:02 |
123 | 1.288947 | 1.178296 | 0.533333 | 00:02 |
124 | 1.286780 | 1.094188 | 0.566667 | 00:02 |
125 | 1.278990 | 1.079829 | 0.633333 | 00:02 |
126 | 1.280690 | 1.146522 | 0.633333 | 00:02 |
127 | 1.277659 | 1.112404 | 0.700000 | 00:02 |
128 | 1.275256 | 1.077389 | 0.566667 | 00:02 |
129 | 1.274448 | 1.371475 | 0.500000 | 00:02 |
130 | 1.273802 | 1.661546 | 0.533333 | 00:02 |
131 | 1.275651 | 1.745858 | 0.466667 | 00:02 |
132 | 1.273929 | 1.663937 | 0.500000 | 00:02 |
133 | 1.270650 | 1.477462 | 0.566667 | 00:02 |
134 | 1.269193 | 1.260925 | 0.566667 | 00:02 |
135 | 1.267992 | 1.182368 | 0.633333 | 00:02 |
136 | 1.265650 | 1.268212 | 0.633333 | 00:02 |
137 | 1.263543 | 1.349007 | 0.600000 | 00:02 |
138 | 1.262578 | 1.366768 | 0.533333 | 00:02 |
139 | 1.260029 | 1.291980 | 0.600000 | 00:02 |
140 | 1.258410 | 1.213087 | 0.666667 | 00:02 |
141 | 1.260078 | 1.172351 | 0.633333 | 00:02 |
142 | 1.258358 | 1.161846 | 0.666667 | 00:02 |
143 | 1.252187 | 1.153422 | 0.666667 | 00:02 |
144 | 1.251021 | 1.143518 | 0.666667 | 00:02 |
145 | 1.251198 | 1.133091 | 0.666667 | 00:02 |
146 | 1.249392 | 1.119584 | 0.666667 | 00:02 |
147 | 1.248203 | 1.107645 | 0.666667 | 00:02 |
148 | 1.247276 | 1.119978 | 0.633333 | 00:02 |
149 | 1.243595 | 1.146225 | 0.633333 | 00:02 |
150 | 1.241543 | 1.176757 | 0.633333 | 00:02 |
151 | 1.238316 | 1.200777 | 0.633333 | 00:02 |
152 | 1.237871 | 1.213209 | 0.633333 | 00:02 |
153 | 1.235683 | 1.203346 | 0.666667 | 00:02 |
154 | 1.233224 | 1.185343 | 0.666667 | 00:02 |
155 | 1.232618 | 1.150263 | 0.666667 | 00:02 |
156 | 1.233111 | 1.124269 | 0.700000 | 00:02 |
157 | 1.232996 | 1.082658 | 0.700000 | 00:02 |
158 | 1.231997 | 1.048401 | 0.733333 | 00:02 |
159 | 1.232146 | 1.027407 | 0.700000 | 00:02 |
160 | 1.232651 | 1.024449 | 0.666667 | 00:02 |
161 | 1.228856 | 1.025052 | 0.666667 | 00:02 |
162 | 1.230592 | 1.037613 | 0.633333 | 00:02 |
163 | 1.230132 | 1.037835 | 0.600000 | 00:02 |
164 | 1.226062 | 1.028810 | 0.633333 | 00:02 |
165 | 1.220277 | 1.017511 | 0.633333 | 00:02 |
166 | 1.219127 | 1.005891 | 0.666667 | 00:02 |
167 | 1.217834 | 0.992963 | 0.700000 | 00:02 |
168 | 1.215868 | 0.988810 | 0.700000 | 00:02 |
169 | 1.210998 | 0.987222 | 0.733333 | 00:02 |
170 | 1.205445 | 0.989531 | 0.733333 | 00:02 |
171 | 1.202443 | 0.994882 | 0.666667 | 00:02 |
172 | 1.200605 | 0.996973 | 0.666667 | 00:02 |
173 | 1.199470 | 0.996149 | 0.666667 | 00:02 |
174 | 1.196583 | 0.994541 | 0.666667 | 00:02 |
175 | 1.195204 | 0.992158 | 0.666667 | 00:02 |
176 | 1.194456 | 0.990747 | 0.666667 | 00:02 |
177 | 1.192639 | 0.986806 | 0.666667 | 00:02 |
178 | 1.189554 | 0.983644 | 0.666667 | 00:02 |
179 | 1.188267 | 0.980869 | 0.666667 | 00:02 |
180 | 1.185815 | 0.978657 | 0.666667 | 00:02 |
181 | 1.185371 | 0.974919 | 0.666667 | 00:02 |
182 | 1.183739 | 0.973566 | 0.700000 | 00:02 |
183 | 1.179749 | 0.973964 | 0.733333 | 00:02 |
184 | 1.177038 | 0.974452 | 0.733333 | 00:02 |
185 | 1.167234 | 0.976603 | 0.733333 | 00:02 |
186 | 1.166255 | 0.980606 | 0.766667 | 00:02 |
187 | 1.164219 | 0.982645 | 0.766667 | 00:02 |
188 | 1.161877 | 0.983812 | 0.766667 | 00:02 |
189 | 1.160285 | 0.987663 | 0.733333 | 00:02 |
190 | 1.158639 | 0.989382 | 0.766667 | 00:02 |
191 | 1.157610 | 0.992286 | 0.733333 | 00:02 |
192 | 1.156571 | 0.991146 | 0.766667 | 00:02 |
193 | 1.157177 | 0.990459 | 0.766667 | 00:02 |
194 | 1.159675 | 0.990053 | 0.800000 | 00:02 |
195 | 1.161296 | 0.990250 | 0.800000 | 00:02 |
196 | 1.160810 | 0.989652 | 0.800000 | 00:02 |
197 | 1.161151 | 0.988033 | 0.800000 | 00:02 |
198 | 1.160224 | 0.986137 | 0.800000 | 00:02 |
199 | 1.159139 | 0.985020 | 0.800000 | 00:02 |
Cutout
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy()).cutout()
learn.fit_one_cycle(200)
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.660396 | 1.620012 | 0.200000 | 00:02 |
1 | 1.637469 | 1.619628 | 0.200000 | 00:02 |
2 | 1.631980 | 1.619524 | 0.200000 | 00:02 |
3 | 1.618567 | 1.619128 | 0.200000 | 00:02 |
4 | 1.604060 | 1.618873 | 0.200000 | 00:02 |
5 | 1.591112 | 1.618706 | 0.200000 | 00:02 |
6 | 1.577234 | 1.618439 | 0.200000 | 00:02 |
7 | 1.566691 | 1.618009 | 0.200000 | 00:02 |
8 | 1.574861 | 1.617688 | 0.200000 | 00:02 |
9 | 1.565786 | 1.617103 | 0.200000 | 00:02 |
10 | 1.553699 | 1.616126 | 0.200000 | 00:02 |
11 | 1.540023 | 1.614528 | 0.200000 | 00:02 |
12 | 1.527577 | 1.612250 | 0.200000 | 00:02 |
13 | 1.518896 | 1.608595 | 0.200000 | 00:02 |
14 | 1.507092 | 1.604372 | 0.200000 | 00:02 |
15 | 1.501131 | 1.597838 | 0.200000 | 00:02 |
16 | 1.504705 | 1.588038 | 0.200000 | 00:02 |
17 | 1.493358 | 1.578237 | 0.266667 | 00:02 |
18 | 1.483621 | 1.567515 | 0.266667 | 00:02 |
19 | 1.474008 | 1.555968 | 0.300000 | 00:02 |
20 | 1.465212 | 1.544741 | 0.300000 | 00:02 |
21 | 1.454736 | 1.529409 | 0.333333 | 00:02 |
22 | 1.443652 | 1.509047 | 0.333333 | 00:02 |
23 | 1.434206 | 1.488219 | 0.333333 | 00:02 |
24 | 1.424903 | 1.487186 | 0.333333 | 00:02 |
25 | 1.414110 | 1.454912 | 0.366667 | 00:02 |
26 | 1.403112 | 1.411377 | 0.366667 | 00:02 |
27 | 1.400361 | 1.454942 | 0.300000 | 00:02 |
28 | 1.394396 | 2.853700 | 0.200000 | 00:02 |
29 | 1.386278 | 3.738343 | 0.200000 | 00:02 |
30 | 1.380608 | 3.026152 | 0.200000 | 00:02 |
31 | 1.375208 | 2.086259 | 0.300000 | 00:02 |
32 | 1.372596 | 2.029034 | 0.300000 | 00:02 |
33 | 1.368522 | 1.776222 | 0.300000 | 00:02 |
34 | 1.364299 | 1.564647 | 0.400000 | 00:02 |
35 | 1.356729 | 1.687982 | 0.400000 | 00:02 |
36 | 1.349027 | 1.828559 | 0.366667 | 00:02 |
37 | 1.341715 | 1.832533 | 0.333333 | 00:02 |
38 | 1.331327 | 1.929781 | 0.366667 | 00:02 |
39 | 1.324214 | 1.609313 | 0.400000 | 00:02 |
40 | 1.316651 | 3.501971 | 0.200000 | 00:02 |
41 | 1.309119 | 4.311689 | 0.200000 | 00:02 |
42 | 1.313026 | 13.606978 | 0.200000 | 00:02 |
43 | 1.311430 | 9.567814 | 0.200000 | 00:02 |
44 | 1.308879 | 7.534220 | 0.200000 | 00:02 |
45 | 1.306159 | 3.707384 | 0.233333 | 00:02 |
46 | 1.301580 | 2.191738 | 0.366667 | 00:02 |
47 | 1.295914 | 2.324064 | 0.366667 | 00:02 |
48 | 1.307469 | 9.194708 | 0.200000 | 00:02 |
49 | 1.302346 | 4.097297 | 0.333333 | 00:02 |
50 | 1.296714 | 3.400907 | 0.400000 | 00:02 |
51 | 1.291286 | 4.134081 | 0.366667 | 00:02 |
52 | 1.292245 | 9.854806 | 0.300000 | 00:02 |
53 | 1.291874 | 32.586937 | 0.200000 | 00:02 |
54 | 1.288160 | 29.200527 | 0.200000 | 00:02 |
55 | 1.284828 | 16.745173 | 0.200000 | 00:02 |
56 | 1.283797 | 11.435283 | 0.200000 | 00:02 |
57 | 1.277688 | 9.402293 | 0.200000 | 00:02 |
58 | 1.272753 | 7.304148 | 0.200000 | 00:02 |
59 | 1.266980 | 5.996444 | 0.200000 | 00:02 |
60 | 1.264276 | 6.278485 | 0.200000 | 00:02 |
61 | 1.258912 | 11.868817 | 0.200000 | 00:02 |
62 | 1.253075 | 9.906275 | 0.200000 | 00:02 |
63 | 1.252298 | 8.497372 | 0.200000 | 00:02 |
64 | 1.248089 | 8.165295 | 0.200000 | 00:02 |
65 | 1.244134 | 5.703846 | 0.200000 | 00:02 |
66 | 1.238663 | 3.617159 | 0.200000 | 00:02 |
67 | 1.232986 | 2.547888 | 0.300000 | 00:02 |
68 | 1.228218 | 2.249779 | 0.366667 | 00:02 |
69 | 1.234005 | 1.480027 | 0.400000 | 00:02 |
70 | 1.244705 | 5.166591 | 0.200000 | 00:02 |
71 | 1.243025 | 9.313371 | 0.200000 | 00:02 |
72 | 1.242977 | 9.378866 | 0.200000 | 00:02 |
73 | 1.242423 | 7.334600 | 0.200000 | 00:02 |
74 | 1.243052 | 6.318696 | 0.200000 | 00:02 |
75 | 1.247443 | 5.345894 | 0.200000 | 00:02 |
76 | 1.245416 | 4.845418 | 0.200000 | 00:02 |
77 | 1.244565 | 5.320508 | 0.200000 | 00:02 |
78 | 1.241501 | 3.297099 | 0.366667 | 00:02 |
79 | 1.236092 | 3.492207 | 0.333333 | 00:02 |
80 | 1.233410 | 3.885850 | 0.266667 | 00:02 |
81 | 1.227951 | 3.243068 | 0.300000 | 00:02 |
82 | 1.225131 | 1.910741 | 0.433333 | 00:02 |
83 | 1.223312 | 1.487790 | 0.466667 | 00:02 |
84 | 1.216726 | 1.447462 | 0.433333 | 00:02 |
85 | 1.220145 | 1.574987 | 0.433333 | 00:02 |
86 | 1.218359 | 2.194073 | 0.366667 | 00:02 |
87 | 1.215006 | 2.299147 | 0.366667 | 00:02 |
88 | 1.210736 | 2.274392 | 0.333333 | 00:02 |
89 | 1.207281 | 2.524296 | 0.266667 | 00:02 |
90 | 1.205115 | 2.238126 | 0.300000 | 00:02 |
91 | 1.204487 | 2.013067 | 0.433333 | 00:02 |
92 | 1.199850 | 2.660136 | 0.333333 | 00:02 |
93 | 1.196869 | 3.244203 | 0.333333 | 00:02 |
94 | 1.194110 | 3.232043 | 0.333333 | 00:02 |
95 | 1.192502 | 2.691142 | 0.333333 | 00:02 |
96 | 1.195390 | 2.010396 | 0.333333 | 00:02 |
97 | 1.190254 | 1.854620 | 0.366667 | 00:02 |
98 | 1.184024 | 1.996308 | 0.366667 | 00:02 |
99 | 1.177545 | 1.911293 | 0.366667 | 00:02 |
100 | 1.174493 | 1.540360 | 0.433333 | 00:02 |
101 | 1.167482 | 1.370175 | 0.400000 | 00:02 |
102 | 1.159704 | 1.308586 | 0.400000 | 00:02 |
103 | 1.153548 | 1.548130 | 0.366667 | 00:02 |
104 | 1.146871 | 1.348858 | 0.366667 | 00:02 |
105 | 1.146403 | 1.077422 | 0.700000 | 00:02 |
106 | 1.141683 | 1.196881 | 0.500000 | 00:02 |
107 | 1.135765 | 1.291074 | 0.500000 | 00:02 |
108 | 1.129827 | 1.262042 | 0.466667 | 00:02 |
109 | 1.123418 | 1.167186 | 0.700000 | 00:02 |
110 | 1.116877 | 1.232698 | 0.566667 | 00:02 |
111 | 1.113724 | 1.866791 | 0.433333 | 00:02 |
112 | 1.111017 | 2.025032 | 0.366667 | 00:02 |
113 | 1.109310 | 1.887846 | 0.366667 | 00:02 |
114 | 1.102472 | 1.619525 | 0.400000 | 00:02 |
115 | 1.095449 | 1.380898 | 0.500000 | 00:02 |
116 | 1.090489 | 1.227257 | 0.533333 | 00:02 |
117 | 1.085784 | 1.403344 | 0.533333 | 00:02 |
118 | 1.078969 | 1.733581 | 0.533333 | 00:02 |
119 | 1.074235 | 1.987759 | 0.533333 | 00:02 |
120 | 1.083529 | 1.523327 | 0.533333 | 00:02 |
121 | 1.083109 | 1.330128 | 0.466667 | 00:02 |
122 | 1.078421 | 1.807096 | 0.333333 | 00:02 |
123 | 1.077411 | 2.611065 | 0.266667 | 00:02 |
124 | 1.076933 | 3.256675 | 0.266667 | 00:02 |
125 | 1.078660 | 3.346977 | 0.266667 | 00:02 |
126 | 1.073926 | 2.891910 | 0.266667 | 00:02 |
127 | 1.072688 | 2.565595 | 0.333333 | 00:02 |
128 | 1.067860 | 2.095694 | 0.366667 | 00:02 |
129 | 1.068164 | 1.778149 | 0.433333 | 00:02 |
130 | 1.066739 | 1.461159 | 0.533333 | 00:02 |
131 | 1.063635 | 1.250543 | 0.666667 | 00:02 |
132 | 1.061969 | 1.226142 | 0.666667 | 00:02 |
133 | 1.057962 | 1.190449 | 0.666667 | 00:02 |
134 | 1.051249 | 1.223222 | 0.666667 | 00:02 |
135 | 1.046239 | 1.219140 | 0.666667 | 00:02 |
136 | 1.043587 | 1.158116 | 0.666667 | 00:02 |
137 | 1.037572 | 1.107074 | 0.733333 | 00:02 |
138 | 1.034447 | 1.136540 | 0.666667 | 00:02 |
139 | 1.027728 | 1.185949 | 0.633333 | 00:02 |
140 | 1.027412 | 1.308161 | 0.500000 | 00:02 |
141 | 1.021058 | 1.282450 | 0.500000 | 00:02 |
142 | 1.017411 | 1.306550 | 0.500000 | 00:02 |
143 | 1.016686 | 1.263149 | 0.500000 | 00:02 |
144 | 1.010793 | 1.198263 | 0.566667 | 00:02 |
145 | 1.008476 | 1.317031 | 0.533333 | 00:02 |
146 | 1.005065 | 1.481030 | 0.466667 | 00:02 |
147 | 0.999182 | 1.471093 | 0.466667 | 00:02 |
148 | 0.997035 | 1.308852 | 0.566667 | 00:02 |
149 | 0.994885 | 1.158710 | 0.600000 | 00:02 |
150 | 0.988591 | 1.089001 | 0.700000 | 00:02 |
151 | 0.983139 | 1.057717 | 0.700000 | 00:02 |
152 | 0.980064 | 1.021482 | 0.766667 | 00:02 |
153 | 0.976560 | 1.005424 | 0.766667 | 00:02 |
154 | 0.974256 | 1.056330 | 0.666667 | 00:02 |
155 | 0.970273 | 1.198120 | 0.566667 | 00:02 |
156 | 0.965092 | 1.395134 | 0.500000 | 00:02 |
157 | 0.962309 | 1.325926 | 0.533333 | 00:02 |
158 | 0.958749 | 1.232951 | 0.600000 | 00:02 |
159 | 0.953150 | 1.236645 | 0.566667 | 00:02 |
160 | 0.948714 | 1.141429 | 0.633333 | 00:02 |
161 | 0.943281 | 1.050981 | 0.700000 | 00:02 |
162 | 0.942111 | 1.027893 | 0.733333 | 00:02 |
163 | 0.935896 | 1.021700 | 0.700000 | 00:02 |
164 | 0.934182 | 1.058105 | 0.666667 | 00:02 |
165 | 0.931000 | 1.137445 | 0.733333 | 00:02 |
166 | 0.934147 | 1.215132 | 0.600000 | 00:02 |
167 | 0.930111 | 1.241952 | 0.600000 | 00:02 |
168 | 0.926065 | 1.256834 | 0.633333 | 00:02 |
169 | 0.920515 | 1.266970 | 0.633333 | 00:02 |
170 | 0.916091 | 1.295894 | 0.633333 | 00:02 |
171 | 0.916563 | 1.379379 | 0.533333 | 00:02 |
172 | 0.913004 | 1.357460 | 0.600000 | 00:02 |
173 | 0.909355 | 1.322893 | 0.633333 | 00:02 |
174 | 0.907756 | 1.289818 | 0.633333 | 00:02 |
175 | 0.905712 | 1.310621 | 0.666667 | 00:02 |
176 | 0.906727 | 1.289430 | 0.633333 | 00:02 |
177 | 0.906684 | 1.339022 | 0.633333 | 00:02 |
178 | 0.906677 | 1.321404 | 0.633333 | 00:02 |
179 | 0.903140 | 1.323079 | 0.633333 | 00:02 |
180 | 0.899265 | 1.351478 | 0.633333 | 00:02 |
181 | 0.895234 | 1.308878 | 0.666667 | 00:02 |
182 | 0.894889 | 1.251764 | 0.700000 | 00:02 |
183 | 0.893129 | 1.269285 | 0.700000 | 00:02 |
184 | 0.887717 | 1.244808 | 0.700000 | 00:02 |
185 | 0.884424 | 1.245035 | 0.700000 | 00:02 |
186 | 0.888531 | 1.224573 | 0.666667 | 00:02 |
187 | 0.885721 | 1.242810 | 0.600000 | 00:02 |
188 | 0.883915 | 1.238724 | 0.633333 | 00:02 |
189 | 0.880226 | 1.209234 | 0.666667 | 00:02 |
190 | 0.877577 | 1.236441 | 0.733333 | 00:02 |
191 | 0.874377 | 1.232569 | 0.733333 | 00:02 |
192 | 0.871007 | 1.249061 | 0.633333 | 00:02 |
193 | 0.873851 | 1.186095 | 0.700000 | 00:02 |
194 | 0.869425 | 1.165819 | 0.666667 | 00:02 |
195 | 0.865002 | 1.161543 | 0.666667 | 00:02 |
196 | 0.863245 | 1.160168 | 0.666667 | 00:02 |
197 | 0.861162 | 1.164579 | 0.700000 | 00:02 |
198 | 0.859056 | 1.186687 | 0.700000 | 00:02 |
199 | 0.862104 | 1.236917 | 0.700000 | 00:02 |
Scheduled data transformation
As a bonus, for those of you who enjoy more complex approaches, I've created a function that will allow you to automatically adjust the value of the alpha parameter during training. Let's see how it works.
☣️ Please, bear in mind that the minimum value of alpha for mixup is > 0 (this is a current fastai constraint). So if you want to start from 0, you can use something like .001 instead.
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy())
tfm_fn = mixup
sch_param='alpha'
sch_val = (.001, 1.) # values of parameter alpha (initial, final)
sch_iter = (0., .7) # percent of training epochs (start, end)
sch_func = partial(annealing_cos) # annealing_cos, None = annealing_linear, cosine_annealing
plot = True
test = True # set to True for adjusting the values. When ready to train set to False
sch_tfm_cb = partial(TfmScheduler, tfm_fn=tfm_fn, sch_param=sch_param, sch_val=sch_val,
sch_iter=sch_iter, sch_func=sch_func, plot=plot, test=test)
learn.callback_fns.append(sch_tfm_cb)
learn.fit_one_cycle(200)
alpha between 0.001 and 1.0 in iters 0.00 to 0.70
<div>
<style>
/* Turns off some styling */
progress {
/* gets rid of default border in Firefox and Opera. */
border: none;
/* Needs to be in here for Safari polyfill so background images work as expected. */
background-size: auto;
}
.progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {
background: #F44336;
}
</style>
<progress value='0' class='' max='200', style='width:300px; height:20px; vertical-align: middle;'></progress>
0.00% [0/200 00:00<00:00]
</div>
epoch | train_loss | valid_loss | accuracy | time |
---|
learn = Learner(db, InceptionTime(db.features, db.c), metrics=accuracy,
loss_func=LabelSmoothingCrossEntropy())
tfm_fn = mixup
sch_param='alpha'
sch_val = (.001, 1.) # values of parameter alpha (initial, final)
sch_iter = (0., .7) # percent of training epochs (start, end)
sch_func = partial(annealing_cos) # annealing_cos, None = annealing_linear, cosine_annealing
plot = True
test = False # set to True for adjusting the values. When ready to train set to False
sch_tfm_cb = partial(TfmScheduler, tfm_fn=tfm_fn, sch_param=sch_param, sch_val=sch_val,
sch_iter=sch_iter, sch_func=sch_func, plot=plot, test=test)
learn.callback_fns.append(sch_tfm_cb)
learn.fit_one_cycle(200)
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.626387 | 1.627592 | 0.100000 | 00:02 |
1 | 1.601632 | 1.626852 | 0.166667 | 00:02 |
2 | 1.580567 | 1.626486 | 0.200000 | 00:02 |
3 | 1.561646 | 1.626253 | 0.200000 | 00:02 |
4 | 1.543889 | 1.625805 | 0.200000 | 00:02 |
5 | 1.526808 | 1.625060 | 0.200000 | 00:02 |
6 | 1.510128 | 1.624043 | 0.200000 | 00:02 |
7 | 1.493622 | 1.622928 | 0.200000 | 00:02 |
8 | 1.477247 | 1.621706 | 0.200000 | 00:02 |
9 | 1.461012 | 1.620356 | 0.200000 | 00:02 |
10 | 1.444964 | 1.618782 | 0.200000 | 00:02 |
11 | 1.429263 | 1.616995 | 0.200000 | 00:02 |
12 | 1.415805 | 1.614870 | 0.200000 | 00:02 |
13 | 1.401853 | 1.613464 | 0.200000 | 00:02 |
14 | 1.388338 | 1.609434 | 0.200000 | 00:02 |
15 | 1.374339 | 1.610430 | 0.200000 | 00:02 |
16 | 1.362183 | 1.602663 | 0.200000 | 00:02 |
17 | 1.348864 | 1.601656 | 0.200000 | 00:02 |
18 | 1.335258 | 1.606995 | 0.200000 | 00:02 |
19 | 1.321574 | 1.596013 | 0.200000 | 00:02 |
20 | 1.306098 | 1.592437 | 0.200000 | 00:02 |
21 | 1.293900 | 1.581123 | 0.200000 | 00:02 |
22 | 1.279845 | 1.564399 | 0.233333 | 00:02 |
23 | 1.271103 | 1.500022 | 0.266667 | 00:02 |
24 | 1.261507 | 1.535057 | 0.200000 | 00:02 |
25 | 1.248613 | 1.472087 | 0.366667 | 00:02 |
26 | 1.237349 | 1.417059 | 0.433333 | 00:02 |
27 | 1.225417 | 1.435310 | 0.400000 | 00:02 |
28 | 1.214563 | 1.365397 | 0.433333 | 00:02 |
29 | 1.203867 | 1.452246 | 0.366667 | 00:02 |
30 | 1.194183 | 1.263637 | 0.433333 | 00:02 |
31 | 1.185022 | 1.283553 | 0.366667 | 00:02 |
32 | 1.171834 | 1.517067 | 0.366667 | 00:02 |
33 | 1.163586 | 1.597277 | 0.400000 | 00:02 |
34 | 1.149949 | 1.694383 | 0.366667 | 00:02 |
35 | 1.138015 | 1.358102 | 0.533333 | 00:02 |
36 | 1.124267 | 2.482912 | 0.333333 | 00:02 |
37 | 1.120735 | 1.297349 | 0.533333 | 00:02 |
38 | 1.109981 | 2.298659 | 0.433333 | 00:02 |
39 | 1.103910 | 4.613716 | 0.400000 | 00:02 |
40 | 1.101009 | 9.654345 | 0.333333 | 00:02 |
41 | 1.094292 | 5.961040 | 0.266667 | 00:02 |
42 | 1.091424 | 4.990852 | 0.333333 | 00:02 |
43 | 1.085680 | 6.741884 | 0.333333 | 00:02 |
44 | 1.078918 | 1.311232 | 0.466667 | 00:02 |
45 | 1.077116 | 3.062059 | 0.366667 | 00:02 |
46 | 1.070217 | 1.283510 | 0.366667 | 00:02 |
47 | 1.064868 | 3.715569 | 0.366667 | 00:02 |
48 | 1.059177 | 1.724050 | 0.400000 | 00:02 |
49 | 1.054424 | 4.899724 | 0.333333 | 00:02 |
50 | 1.054437 | 2.283245 | 0.400000 | 00:02 |
51 | 1.053111 | 2.297719 | 0.466667 | 00:02 |
52 | 1.050523 | 2.093637 | 0.433333 | 00:02 |
53 | 1.047141 | 1.727470 | 0.466667 | 00:02 |
54 | 1.046703 | 4.376657 | 0.333333 | 00:02 |
55 | 1.043961 | 6.196053 | 0.366667 | 00:02 |
56 | 1.039703 | 6.152739 | 0.266667 | 00:02 |
57 | 1.035884 | 8.199553 | 0.200000 | 00:02 |
58 | 1.033973 | 9.609694 | 0.200000 | 00:02 |
59 | 1.030891 | 6.227965 | 0.233333 | 00:02 |
60 | 1.028900 | 5.746769 | 0.200000 | 00:02 |
61 | 1.027948 | 5.763941 | 0.200000 | 00:02 |
62 | 1.028211 | 2.939988 | 0.366667 | 00:02 |
63 | 1.028534 | 1.482004 | 0.400000 | 00:02 |
64 | 1.029271 | 4.230787 | 0.366667 | 00:02 |
65 | 1.029912 | 6.466330 | 0.333333 | 00:02 |
66 | 1.027463 | 3.925814 | 0.433333 | 00:02 |
67 | 1.025617 | 3.920921 | 0.466667 | 00:02 |
68 | 1.022813 | 3.472798 | 0.466667 | 00:02 |
69 | 1.018501 | 3.049520 | 0.366667 | 00:02 |
70 | 1.018678 | 2.491311 | 0.333333 | 00:02 |
71 | 1.017646 | 1.477216 | 0.300000 | 00:02 |
72 | 1.015955 | 2.422115 | 0.466667 | 00:02 |
73 | 1.011675 | 1.438160 | 0.366667 | 00:02 |
74 | 1.006047 | 1.375284 | 0.466667 | 00:02 |
75 | 1.002805 | 1.802636 | 0.466667 | 00:02 |
76 | 0.998354 | 3.754055 | 0.333333 | 00:02 |
77 | 0.994339 | 2.482006 | 0.400000 | 00:02 |
78 | 0.994594 | 1.123771 | 0.666667 | 00:02 |
79 | 0.992726 | 1.100370 | 0.700000 | 00:02 |
80 | 0.993869 | 1.098626 | 0.700000 | 00:02 |
81 | 0.989084 | 0.969644 | 0.700000 | 00:02 |
82 | 0.986687 | 1.031124 | 0.633333 | 00:02 |
83 | 0.985856 | 1.389311 | 0.466667 | 00:02 |
84 | 0.982548 | 1.677026 | 0.333333 | 00:02 |
85 | 0.980049 | 1.984690 | 0.233333 | 00:02 |
86 | 0.977262 | 2.663417 | 0.233333 | 00:02 |
87 | 0.974976 | 2.417084 | 0.233333 | 00:02 |
88 | 0.975138 | 1.385765 | 0.533333 | 00:02 |
89 | 0.972034 | 1.563319 | 0.433333 | 00:02 |
90 | 0.969463 | 1.633355 | 0.500000 | 00:02 |
91 | 0.968935 | 2.039129 | 0.533333 | 00:02 |
92 | 0.967603 | 1.541844 | 0.600000 | 00:02 |
93 | 0.968810 | 1.315756 | 0.600000 | 00:02 |
94 | 0.970300 | 3.284852 | 0.400000 | 00:02 |
95 | 0.971463 | 3.589286 | 0.333333 | 00:02 |
96 | 0.971568 | 2.353341 | 0.400000 | 00:02 |
97 | 0.970776 | 2.591434 | 0.400000 | 00:02 |
98 | 0.970075 | 2.927469 | 0.333333 | 00:02 |
99 | 0.971289 | 2.609849 | 0.333333 | 00:02 |
100 | 0.974466 | 2.325409 | 0.333333 | 00:02 |
101 | 0.974490 | 2.081188 | 0.366667 | 00:02 |
102 | 0.973824 | 1.359118 | 0.466667 | 00:02 |
103 | 0.972219 | 1.090843 | 0.533333 | 00:02 |
104 | 0.971711 | 1.190391 | 0.500000 | 00:02 |
105 | 0.972649 | 1.588080 | 0.433333 | 00:02 |
106 | 0.974650 | 1.835901 | 0.466667 | 00:02 |
107 | 0.973514 | 1.870666 | 0.400000 | 00:02 |
108 | 0.972411 | 1.652206 | 0.433333 | 00:02 |
109 | 0.974086 | 1.278639 | 0.666667 | 00:02 |
110 | 0.974933 | 1.040625 | 0.700000 | 00:02 |
111 | 0.972952 | 1.021651 | 0.633333 | 00:02 |
112 | 0.971806 | 1.343572 | 0.533333 | 00:02 |
113 | 0.969928 | 1.387259 | 0.500000 | 00:02 |
114 | 0.967772 | 1.570803 | 0.433333 | 00:02 |
115 | 0.965366 | 1.621146 | 0.400000 | 00:02 |
116 | 0.962725 | 1.714004 | 0.433333 | 00:02 |
117 | 0.960849 | 1.907067 | 0.466667 | 00:02 |
118 | 0.957004 | 1.591835 | 0.533333 | 00:02 |
119 | 0.958164 | 1.680010 | 0.533333 | 00:02 |
120 | 0.958625 | 1.225325 | 0.533333 | 00:02 |
121 | 0.956625 | 1.107982 | 0.600000 | 00:02 |
122 | 0.957369 | 1.121521 | 0.633333 | 00:02 |
123 | 0.955815 | 1.202939 | 0.666667 | 00:02 |
124 | 0.954944 | 1.234500 | 0.666667 | 00:02 |
125 | 0.954373 | 1.474302 | 0.566667 | 00:02 |
126 | 0.951846 | 1.589271 | 0.533333 | 00:02 |
127 | 0.951891 | 1.673985 | 0.566667 | 00:02 |
128 | 0.953131 | 1.567316 | 0.533333 | 00:02 |
129 | 0.953709 | 1.088511 | 0.633333 | 00:02 |
130 | 0.953542 | 1.128953 | 0.600000 | 00:02 |
131 | 0.952610 | 1.575795 | 0.533333 | 00:02 |
132 | 0.953830 | 1.743010 | 0.533333 | 00:02 |
133 | 0.951794 | 1.571326 | 0.500000 | 00:02 |
134 | 0.949696 | 1.577728 | 0.433333 | 00:02 |
135 | 0.952297 | 1.815940 | 0.400000 | 00:02 |
136 | 0.952972 | 2.064868 | 0.500000 | 00:02 |
137 | 0.955628 | 2.435957 | 0.400000 | 00:02 |
138 | 0.954675 | 2.641927 | 0.400000 | 00:02 |
139 | 0.954418 | 2.548305 | 0.433333 | 00:02 |
140 | 0.955395 | 1.842673 | 0.466667 | 00:02 |
141 | 0.955617 | 1.097640 | 0.700000 | 00:02 |
142 | 0.954719 | 0.925584 | 0.733333 | 00:02 |
143 | 0.956634 | 0.877834 | 0.733333 | 00:02 |
144 | 0.954160 | 0.841679 | 0.833333 | 00:02 |
145 | 0.954152 | 0.808143 | 0.833333 | 00:02 |
146 | 0.954123 | 0.787732 | 0.833333 | 00:02 |
147 | 0.951483 | 0.767450 | 0.866667 | 00:02 |
148 | 0.949662 | 0.753072 | 0.900000 | 00:02 |
149 | 0.947428 | 0.766489 | 0.833333 | 00:02 |
150 | 0.948786 | 0.804269 | 0.766667 | 00:02 |
151 | 0.946424 | 0.854882 | 0.700000 | 00:02 |
152 | 0.947040 | 0.908327 | 0.666667 | 00:02 |
153 | 0.945913 | 0.951015 | 0.666667 | 00:02 |
154 | 0.945124 | 1.022153 | 0.633333 | 00:02 |
155 | 0.943171 | 1.066825 | 0.633333 | 00:02 |
156 | 0.942373 | 1.054384 | 0.633333 | 00:02 |
157 | 0.940294 | 0.997566 | 0.633333 | 00:02 |
158 | 0.940491 | 0.971229 | 0.633333 | 00:02 |
159 | 0.939682 | 0.846206 | 0.766667 | 00:02 |
160 | 0.939346 | 0.764268 | 0.866667 | 00:02 |
161 | 0.937229 | 0.754534 | 0.833333 | 00:02 |
162 | 0.933547 | 0.787042 | 0.800000 | 00:02 |
163 | 0.933203 | 0.857130 | 0.766667 | 00:02 |
164 | 0.933637 | 0.915972 | 0.766667 | 00:02 |
165 | 0.931348 | 0.919065 | 0.766667 | 00:02 |
166 | 0.931428 | 0.859337 | 0.766667 | 00:02 |
167 | 0.929779 | 0.789867 | 0.800000 | 00:02 |
168 | 0.928110 | 0.753117 | 0.866667 | 00:02 |
169 | 0.926101 | 0.738458 | 0.866667 | 00:02 |
170 | 0.925353 | 0.755080 | 0.800000 | 00:02 |
171 | 0.926029 | 0.771436 | 0.766667 | 00:02 |
172 | 0.925250 | 0.785918 | 0.766667 | 00:02 |
173 | 0.924132 | 0.790192 | 0.766667 | 00:02 |
174 | 0.924556 | 0.791276 | 0.800000 | 00:02 |
175 | 0.923391 | 0.790005 | 0.800000 | 00:02 |
176 | 0.921544 | 0.790712 | 0.800000 | 00:02 |
177 | 0.919461 | 0.794095 | 0.800000 | 00:02 |
178 | 0.917881 | 0.796023 | 0.800000 | 00:02 |
179 | 0.917527 | 0.795494 | 0.800000 | 00:02 |
180 | 0.915659 | 0.784916 | 0.800000 | 00:02 |
181 | 0.915729 | 0.777742 | 0.800000 | 00:02 |
182 | 0.914645 | 0.770701 | 0.833333 | 00:02 |
183 | 0.913537 | 0.767288 | 0.833333 | 00:02 |
184 | 0.912305 | 0.764935 | 0.833333 | 00:02 |
185 | 0.910081 | 0.762620 | 0.833333 | 00:02 |
186 | 0.908561 | 0.763817 | 0.833333 | 00:02 |
187 | 0.909015 | 0.764751 | 0.833333 | 00:02 |
188 | 0.908268 | 0.764663 | 0.833333 | 00:02 |
189 | 0.907292 | 0.765498 | 0.833333 | 00:02 |
190 | 0.905085 | 0.766115 | 0.833333 | 00:02 |
191 | 0.904604 | 0.768526 | 0.833333 | 00:02 |
192 | 0.904123 | 0.769853 | 0.833333 | 00:02 |
193 | 0.903383 | 0.774133 | 0.800000 | 00:02 |
194 | 0.901851 | 0.778949 | 0.800000 | 00:02 |
195 | 0.901167 | 0.782591 | 0.800000 | 00:02 |
196 | 0.900324 | 0.784429 | 0.800000 | 00:02 |
197 | 0.898247 | 0.786330 | 0.800000 | 00:02 |
198 | 0.897429 | 0.791879 | 0.800000 | 00:02 |
199 | 0.897475 | 0.795262 | 0.800000 | 00:02 |